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Abstract

This paper shows that the temporal and spatial structure of adsorption—desorption processes can be optimized for maximal packing of
mass transfer into a fixed space, and for minimal overall pumping power. In the first part of the paper, simple models demonstrate that
the periodicity of such processes can be optimized in three settings: fixed desorption time, variable desorption time, and variable species
concentration in the gas space. The second part of the paper shows how the optimized time scales determine the dimensions of the smalle
flow channels—the elemental system. The available space can be packed with elemental systems in a hierarchical (constructal) structur
[Bejan, Shape and Structure, from Engineering to Nature, Cambridge University Press, 2000], in which elements are assembled into first
constructs, first constructs are assembled into second constructs, etc. The robustness and nearly optimal performance of the optimized ma
exchanger structure is discussed.
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1. Introduction anism used in the desorption step differentiates the sepa-
ration processes into two classes. When the removal is in-
In this paper we apply the constructal method [1] to the duced by reducing the pressure the process is called Pres-
hierarchical multi-scale design of absorption systems with sure Swing Adsorption process (PSA). When it is induced
maximum “density” per unit volume and time. In all ad- by raising the temperature it is called Thermal Swing Ad-
sorption separation processes, the essential requirement isorption process. Major applications of the kinetically ad-
an adsorbent that adsorbs preferentially one component (orsorption processes are the production of nitrogen by air sep-
one family of related components) from a mixed feed. This aration and separation of hydrocarbons from gas mixtures
selectivity may depend on a difference in adsorption equi- [3].

librium (equilibrium-selective) or on a difference in sorp- The intermittent nature of the adsorption processes makes
tion rates (kinetically-selective) [2,3]. Adsorption separation it suitable for optimization of the times involved. In equilib-
processes involve two principal steps: rium-selective processes, however, cycle times are not the

direct variable to control, because equilibrium is reached al-
(i) adsorption, during which the preferentially adsorbed most instantly and mass transfer rates are not so important
species are removed from the feed; [4]. Instead, the variables that are more suitable for opti-
(i) regeneration or desorption, during which these species mijzation refer to flow rates and geometrical features [5]. In
are removed from the adsorbent, thus regenerating theyinetically-selective processes, the cycle times are the vari-
adsorbent for use in the next cycle. ables to control, because mass transfer rates are most impor-
tant [6].
It is possible to obtain useful products from either the ad- Optimization of the cycle times can be carried out in
sorption or desorption steps, or from both steps. The mech-q e to select several variables. For example, one can adjust
the pressurization and depressurization times to obtain a
~* Corresponding author. product with maximum purity, or the maximum amount of
E-mail address: dalford@duke.edu (A. Bejan). product per unit time, or production with minimum cost or
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Nomenclature

a dimensionless adsorbed quantity U velocity of gas mixture................ BTt

a dimensionless time-averaged rate ofA Un overall mass transfer coefficient........ amt
production 4 PUMPING POWET ... ..o w1

A £ L= 2m f/f/ dimensionless pumping power

Cy concentration of species in the solid VA molar fraction of specied
adsorbent.................ooou... knmat3

Cag  concentration of species in the gas kmom~3 Greek symbols

Cas  concentration of species in the solid—gas AC  concentration difference........... krol—3
surface ... kmoi—3 AP pressuredrop............coeeuueein... N2

d gaS Iayer th'CkneSS ....................... m APL pressure drop along Channel __________ nNz

d cha_mnel SPACING ..o m Ay ACtVAtion ENErgy .. ................ kinol~1

dy solid Iaygr thickness....... TR ERREEE m g dimensionless time

dy mechanical strength layer thickness ... ..... L VISCOSIY v eveeeeeeaen kg l.m1

D mass diffusivity of4 in the gas mixture rhs! ) Kinematic Viscosit -1

Dy mass diffusivity ofA in the solid.. ... ... s 1 densit Yoo 3

ja mass flux of specied......... kmolm—2.s71 P S e e S kg

a0 o d mass flux of T desorptlon—gdsorptlor? times ratio

JA gpmeedz\;irage kmoin-2.5-1 ¢ volume fraction occupied by flow channel

K Henry coefficient Subscripts

K4 Henry coeff!c!ent of ;pggie& 0 initial

Ko Henry coefficient at infinite temperature 1 adsorption step, or first construct

i mass fiow rate per unilength ... kgim- | 2 desorptionstep, orsecond construc

m” volumetric rate of gas flow . . ... . .. kop—3.s71 3 ﬂ:j'rd construct

n number of stacked elements “ a so_rptlon

n volumetric rate of species A spec!esA
removal.........c.oooeenen... kmaoh—3.s71 B speciess

P Pressure. ..... ..o Pa d desqrpt{on

r solid and gas layers thickness ratio eq equilibrium

R universal gas constant.......... khol~1.K—2 f final

59 Schmidt number max  maximum

T TeMPErature . . ... e e, K opt  optimum

t tMe L s s solid

minimum exergy destruction. Several publications describe the diffusion length associated with the optimized time scale
the relationships between cycle times and product purity optimized in the first part of the paper.
[6-8] and lost exergy [7].

In the first part of this paper we show that the time in-
tervals of the production cycle can be optimized in order to 2, Fixed desorption time
achieve the maximum time-average rate of production. This
class of optimal times adds to the list of engineered systems In the following analysis we consider the simplest model
that have an optimized intermittent operation [1], and ac- w4t retains the main features of the process. Fig. 1 shows
quire structure in time. The time models are the simplest, i, system model. The following assumptions are made:
and the results may seem trivial, but this is intentional. We there are two gaseous componemsand B), the process
want to show in the most basic sense that opportunities t0js modeled as ‘open batch’ (meaning that the length scale is
optimize rhythm exist. In the second part of the paper we pmitted in the analysis; this is valid whe¥, /U < d/L),
consider the spatial construction of a volume designed for the concentration of each component is constant in the gas,
maximum absorptiodensity. As in maximum-compactness  the equilibrium between gas and the solid—gas interface is
architectures for heat exchangers [9] and animal body insu-dictated by Henry’s law, and there is mass transfer from the
lation [10], the flow structure consists of two trees matched solid—gas interface to the solid adsorbent for only one of
canopy to canopy. The smallest (elemental) volume scalethe componentsA), and the desorption time is fixed. These
with which the constructal sequence begins is dictated by simplifying assumptions are discussed further in Section 9.
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Fig. 1. Top: Channel filled with a gaseous mixture, and transversal
adsorption of specied in the adsorbing wall. Bottom: Sequence of two
adsorption §;) — desorption ) cycles.

Adsorption proceeds in the direction perpendicular to the
gas—solid interface, and is located at the surface.

As shown in Fig. 1C4e, Cas andCy4 are, respectively,
the concentrations of specidgsin the gas, solid—gas inter-
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universal gas constant, the temperature and the total pressure
of the gas mixture. The concentration4fin the gas C4,)

can be changed by changifg(Pressure Swing Adsorption)

or by changingl' (Thermal Swing Adsorption). By solving
Egs. (1)—(3), we calculate the amount of adsorbed species

a=1—exp(—0) (5)
where
Ch—-C U,
a=_—4A" =40 g =2m, (6)
KaCag — Cao dy

The dimensionless adsorbed quantity fakes values be-
tween 0 and 1. The limiz = 0 means that the solid sur-
face has not adsorbed yet, and the concentration of sp&cies
in the solid is at the residual concentration le@gly. The
other extremeg = 1, means that solid has adsorbed all the
A of which it is capable of adsorbing, i.e., the concentra-
tion of A in the solid is at the maximum level possib&;;.
The dimensionless time is unrestricted, and can take val-
ues higher or lower than 1.

In a complete optimization of the cycle, the adsorption
and desorption processes are coupled and must be optimized
together. For simplicity, in this section we model only the
adsorption process. For the desorption process we assume
that the time allocated to it is fixed,. The adsorption time
is variable,#1. Even when the desorption mechanism is not
specified, the time can be controlled as we show later in

face (surface) and solid adsorbent. The mass balance foriEq. (18): a pair of timesg, 62) can be obtained by selecting

speciesA at the solid surface requires

dc U,
—A =2 (Cps = Ca)
d,

dr @)

Here U, is the global coefficient of mass transfer for the
speciesA. It is assumed that only specidsis adsorbed. In
the adsorption stef 4, is greater tharC,4, and speciest
flows from gas to solid. In the desorption si€p; is smaller
thanCy4, and species flows from solid to gas. The initial
condition is

Ca=Cpo atr=0 (2)
In the case of adsorptioif; 4o represents the residual con-

the properag for the desorption mechanism. The lower
portion of Fig. 1 shows a sequence of two complete cycles.
The time-averaged rate df production, or the average flow
of speciesA from the gas to the solid, is proportional to the
dimensionless quantity

a1 1—exp(—61) _ 1—exp(—621)
01462 61+62 Gt +1D)
whereqas is the total amount oA adsorbed during;, andz
is the time ratio
01
T=—
02

Q

(7)

(8)

centration in the preceding desorption step. When Eqgs. (1)According to the first of Egs. (6); takes values in the 0-1

and (2) refer to desorptioid; 4o represents the final concen-
tration of the adsorption step. Henry’s law provides a rela-
tionship between the gas and surface concentration

Cas = KaCyg )

whereK 4 is the Henry coefficient for the equilibrium solid—
gas of speciedi. In this model, the concentration df in

the gas C4,) is assumed constant. This assumption will be
relaxed in Section 4.

The two-component gas is modeled as an ideal gas

mixture, thereforeC 4, is given by

Py yaP
== @
RT RT
where P4, y4, R, T and P are the partial pressure of
componentA, the molar fraction of component, the

Cag

range, and is equal to
ja

jA,max

9

a=

where , is the time-averaged mass flux of the produded
am Ca1— Cao

1141
and j4 max is the maximum mass flux, which occurs at the
start of the adsorption process, cf. Eq. (1),

(10)

. U,
JA, max= d—m(KACAg — Ca0) (11)

)
The time of adsorptiod; can be selected such thais
maximum. Fig. 2 shows the variation @fwith t for several
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T

Fig. 2. The maximization of the time-averaged adsorption @tevhen the
desorption time intervalg) is fixed.
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Fig. 3. The optimal time ratio and maximal average adsorption rate when
the desorption process is not specified.

values off,. There exists an optimal (or 61) for which the
average rate ofA production is maximum. The maximized
production rate dmay) is higher whend, is shorter. By
solving da/dt = 0 we determine the relation betweest

ando,,
1+ 62(topt+ 1) = exp(B2topt) (12)

Combining this relation with Eq. (7) we obtaifnax as a
function of 62, as shown in Fig. 3. The same figure also
showsrpt as a function ob.

3. Variable desorption time

In the analysis presented in this section the constant-

A oCp | oCp
jA vCAsa jA l 'CAsd
.CAga g CAgd
Adsorption Desorption
a
L o m e mmqemmm e eem e mmme
PPl F— R T R SR

S E |

sy S |

91+92

Fig. 4. Sequence of two adsorption—desorption cycles in which the two time
intervals 01, 6») may vary.

The concentration ofA in the gas can be changed by
changing the pressure or the temperature. When the pres-
sure is changed, the Henry constants for adsorption and des-
orption are the same 4, = K 44. When the temperature is
changed, the Henry constants are related to the temperature
through the van’t Hoff relation

K = Koexp(—AU/RT) (14)

wherekK, Ko, AU andR are the Henry constant, Henry con-
stant at infinite temperature, activation energy, and universal
gas constant. By solving Egs. (1), (2) and (13) we obtain the
amount of adsorbed specigasduring the adsorption step

(15)

This is equal to the amount oA removed during the
desorption step

a=1-(1-ag)exp—06)

a=ayrexp—o) (16)

where the dimensionless adsorbed quantity (a) takes values

assumption is not made. The desorption process consistgetween 0 and 1

of placing the solid in contact with a fluid of lower
concentration ofA. As shown in Fig. 4, during the two-

stroke cycle two gaseous mixtures interact with the same

solid, one mixture during adsorptiofiy( C 4. > C4), and
another during desorptiod4, C444 < C4). We continue to
assume that the concentrationsfoét the surface are related
to the concentrations in the gas through Henry’s law,

(13)

HereK 4, and K 44 are the Henry constants for the adsorp-
tion and desorption steps, respectively.

Casa = KaaCaga, Casd = KaaCaga

Ca — KaaCaga

a =
KaaCaga — KaaCaga

(17)

The limit @ = 0 means that the concentration df in

the solid is at the minimum level possibl€ {4), i.e.,
equilibrium has been achieved with the gaseous mixture of
the desorption step. The other extremes 1, means that
the concentration ofl in the solid is at the maximum level
possible Casq), i.€., the solid is in equilibrium with the
gaseous mixture of the adsorption step. The quantities
anday refer to the final concentrations after the desorption
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Fig. 6. The optimal time ratio and maximal average adsorption rate based

Fig. 5. The maximization of the averaged rate of spedigg-oduction, by on the model of Fig. 4

varying ag at constand,.

1
and the adsorption steps, respectively. Combining Egs. (15) |
and (16) yields the relation betweénand6,,
] a?,opt
1—apexp®
0= — In(M) (18) 05 |
1—ao ]
The time-averaged rate df production is proportional to Qoopt
- exp(z) — 1 |
5 4r—ao _ aolexp®?) — 1] (19) o~
01+ 62 O2(t + 1) 0.01 0.1 1 10 100

6,
wherert is given by Eq. (8). Eg. (9) continues to apply, with
jA,maniven by Fig. 7. The gap between they and ag values corresponding to the
optimized cycle of Fig. 4.
Un

y (K 4aCaga — KaaCagd) (20)
s

jA,max=
4. Variable concentration of species A in the gas
Fig. 5 shows the variation ofi with ag for several mixture

values of6. This figure was constructed by combining

Egs. (18) and (19). There exists an optimafar which the Consider now the case when the concentratiaf of the
average rate oft production is maximum. The optimab gas is not fixed. During adsorption, the concentration af
is equivalent to an optimal combination of parametars the gas mixture decreases while the concentratiohiafthe

anday. The maximized production rateigax) is higher  solid increases. The concentrations4oin solid and gas are
when 6, is shorter. Solvingda/dao = 0 with 62 constant,  represented by two valueS,, andC 4, which are functions

we obtain an implicit relation between, opt andoy, of time. The concentration variation across the gas space is
neglected. The&Cy, andC4 values are related through the
ao,op 1 — exp(62)] species conservation statement
%2 % 1= d.0p0 (1 = 0.0 eXp62)]
00pt 1L = 0.0p1 EXP(02 Cag = Cago=—r(Ca = Cs0) (22)
= In(lzo’+toe}q:(92)> (21) whereC g0 is the initial concentration oft in the gas, and
— ao.op

r is the ratio of the solid and gas layers thicknesses (Fig. 1).
Combining this with Eqgs. (16), (18) and (19) we obtain d,

afopt Topt nddmax @s functions oft. These results are "= (23)
reported in Figs. 6 and 7. The trends reported in Fig. 7 are o . . o

similar to what we obtained based on the simpler model in The equilibrium concentration of in the solid (i.e., the

Fig. 3. This time the transition from smaly- behavior to concentration reached when the mass transfer between gas
larged, behavior is considerably steeper, and is located in @d S?“d ceases) can be calculated from Eq. (22) and
a higheré, range than in Fig. 3. A8, increases, the gap Henry’s law at equilibrium,
Wid_en_s between thef andag values corresponding to the KaCago+rKaCao
optimized cycle (Fig. 7). Caeq=

24
1+rKy (24)
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1/(1+rKA)

0

0 6, 6,+6,

Fig. 8. Sequence of adsorption—desorption cycles with time-dependent

concentration in the gas space.

F
From Egs. (1)-(3) and (22) we can calculate the amount of

adsorbed,
1- —0(1+rK
g exp—0(1+rK4)] (25)
14+rKy
where
Cy—-C Cy—-C
A A0 A AO (26)

a = =
KaCago—Cao  (Caeq— Ca0)(1+rKa)

In this formulation, parameter a takes values between 0 for Volume

Ca=Cao,and Y(1+rKy) for Cs = Ca.eq

Consider an adsorption—desorption cycle (Fig. 8), where
the desorption mechanism is unknown but takes a fixed
time 62. During adsorption, the concentration in the solid

increases, and the concentration in the gas decreases. Botn

concentrations tend to the equilibrium concentrationr;
1/(1 + rK4). The time-averaged rate of production is
proportional to

ar l—exg—61(1+rKs)]
61462 (O1+02)(1+rKy)
_ 1—exp—6ar(1+7Ky)]

a=

(27)
(t+1)(A+rKa)
where, according to the definition (9), ja,max iS
U
jamax=—=(KaCago = C40) (28)

We find that the variation ofi with ¢ for several values
of 62(1 4+ rKy) is the same as in Fig. 2, i, is replaced
by 62(1 4+ rK4). There exists an optimat (or 61) for
which the average rate df production is maximum. Solving
da/dt = 0 we arrive at the equation fappt,

14 62(1+rKa)(topt+1) = exp(02(1+ rKa)topt)  (29)

which has the same form as Eq. (12). The corresponging
and amax may be viewed in Fig. 3 as functions 63(1 +
rK ), if on the abscissa we replaée with 62(1 + rK 4).
Fig. 9 showstopt and amax as functions o, for several
values ofr K 4.

5. Elemental volume

In Sections 2—-4 we considered the optimization of the
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rKa = 0.1

Topt

0
100

6,

Fig. 9. The optimal time ratio and maximal adsorption rate for the model of
ig. 8.

Gas Flows
U — A . 2
] :J_L d
Elemental d, ds

Fig. 10. Elemental volume with longitudinal gas flow and transversal
diffusion length scales.

we analyzed, and each led to the conclusion that an optimal
adsorption time exists when the desorption tindge) (is
specified. In particular, Figs. 3 and 6 showed that in the limit
of short desorption times9{ « 1) the optimal time ratio

is T =1, or 01 0opt = 62, and y opt = 2. In this limit both
time intervals are short, and, according to Eq. (10), the mass
transfer rate is high. In conclusion, short and optimized times
are attractive from the point of view of building high-density
devices for adsorption and desorption.

In this section we explore the packing (compactness)
implications of the above observation. Short times also
mean small length scales. How should a macroscopic device
of specified volume be filled with a large number of
working channels of the type (e.g., Fig. 1) analyzed in the
preceding material? Earlier constructal optimization studies
have shown that optimal timing requires optimal allocation
and arrangement of working material in space [1]. Temporal
organization goes hand in hand with spatial organization,
when the objective is to achieve the most with a device of
specified size—the most per unit volume.

We pursue this objective in the direction from small
to large, hierarchically, in accordance with the constructal
method [1]. The start is the smallest identifiable finite-size
unit that performs the intended function of adsorption and
desorption. That unit is the “elemental volume” sketched in

timing of the adsorption and desorption steps. Three modelsFig. 10. For the gas volume to work best, i.e., without dead
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spaces that do not participate, its transversal length ¢é¢ale  where AP is the pressure difference maintained in the
must match the length penetrated by mass diffusion duringlongitudinal direction. Eg. (36) means that the entrance

adsorption, length for the development of the velocity profile is shorter
1/2 than L. Conversely, sincel is the entrance length for
d ~ (Dny) (30) . )
_ o - . the development of the concentration profile, the use of
In this scale analysi® is the mass diffusivity of specie$ Eq. (36) means that the momentum diffusivity is larger than

in the gas mixture, and~" stands for “equal in an order of  the mass diffusivity { > D), or thatSc > 1. Combining
magnitude (scaling) sense” [11]. The same argument holdsEggs. (29), (35) and (36) we find the relation between the two

for the thickness of solid layer that acts as adsorbent, dimensions of the channel,
dg ~ (Dstl)l/z (31) L AP 1/2
whereD, is the mass diffusivity oft in the solid. Finally, the ~ 72 ~ M—D) (37)

same length scales must be penetrated by diffusion during
the desorption step, Eq. (37) is the mass transfer analog of the principle of pack-

12 12 ing maximum heat transfer in a given volume [1,11-14].

d~ (D)™, ds ~ (Ds12) (32) When the time scale; (or 7,) decreases, the transversal

Combining Egs. (31) and (32) we arrive at the geometric length scaléd) decreases a%/z, and the longitudinal scale

requirement that the adsorption and desorption times mustdecreases as, i.e., faster thaw. We can always imagine a

be of the same order of magnitude, t1 scale so small that the calculateds smaller tharn!: such

o~ 1 (33) a case_violates the slender channel assumptior_1 tha_lt served
as basis for the boundary layer and Hagen—Poiseuille flow

and that the transversal length scales of the elementalassumptions made earlier in this analysis. Consequently, we

volume must be in a certain proportion, invoke the channel slenderness constrdipd > 1, which

d DA\Y2 in combination with Eqgs. (37) and (29) yields the following
j ~ <3S) (34) criteria for the validity of this analysis:

Eq. (33) is the same as the equality of the two time strokes wD 1/2

observed in respiration (inhaling, exhaling) and blood cir- ¢ > <E> (38)
culation (heart beating) [1]. Using; ~ 10719 m2.s~1 and

D ~10-°> m2.s~1 as representative orders of magnitude for ¢ > L (39)
diffusion in solid and gas, we estimatk/d ~ 10~2: The AP

layer of adsorbent that works duringandz is consider- In summary, when the time scale (or 1) is specified, all

ably thinner than the channel filled with gas. Because of me- the dimensions of the elemental volume can be calculated
chanical strength requirements, the actual solid layer may befrom the requirement that the entire elemental volume must
thicker thand,. Alternatively, ad;-thick layer of adsorbent  be used with purpose: to adsorb and desorb the species
may be deposited on a wall of another material of thickness of interest. How well is the optimized elemental geometry
dy, which provides the needed mechanical strength. performing? In other words, what quantity of speciess

The longitudinal length scale, or the slenderness of the being removed from the gas mixture per unit volume and
elemental volume is furnished by the same requirementper unit time? We answer by continuing to assume that the
of squeezing the most performance out of the elementalgeometry is two-dimensional, i.e., the elemental volume is
volume. The gas channélx L is used entirely when itis  represented by the ardax d, when thed scale is greater

traversed by mass diffusion during the same time interval than(d, +d,,). The quantity of interest is related to the mass
that the gas mixture resides in the channel. Said another wayjjyx scale associated with the time scale

duringz; the gas flow sweeps the entire length

AC D\Y?
L=Un (35) ja~ D7 ~ AC(;_) (40)
1
whereU is the mean velocity of the gas mixture. This means

that at the channel exit the thickness of the concentrationWhereAC is the scale of the concentration difference, e.g.,
boundary layers is comparable with the diffusion length ~ Cas — Ca in Eq. (1). The total amount of removed from

or that the boundary layers merge just as the gas leaves thdhe gas mixture by one elemental volume during one cycle is
channel. of order j4 Lt1. The units of the groug, Lt; are kmolm=1,

To estimate thd/ scale we assume that the channel is that is the amount ofA per unit of length perpendicular to
narrow and long enough that the flow regime is laminar and the L x d plane. The rate oA removal per unit volume and
fully developed, per unittime i’ = (jsLt1)/(Ldr1), or

d’AP AC AC

36 "~ D— ~ — 41
i ®6) A~ Dy~ (41)

~
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This quantity increases sharply asdecreases. The largest 1
7" that can be estimated based on this slender-channel—— | | | | | | | | d
formulation is obtained by combining Eq. (41) with Eq. (39), 1 I i 1 I i 1 1
M
ACAP

.11
n

. (42) )
Then” estimate of Eq. (41) can also be derived from the L
conservation of species argument. The cycle-averaged rate | | | | | | | | )
at which speciesA is brought into the elemental volume —
by the gas mixtureACUd, must be the same as the rate | . |
at which the elemental volume removes specigsom the ! 1 !
mixture,n” Ld. This balance means

Fig. 11. First construct containing a large number of elemental volumes

" AC% 43) supplied by a single stream.
which, after using thé/ and L scales derived earlier, leads WhereU1 ~ nir} /(pd1). We assume that the spacifigscales
to Eq. (41). with, and is a small fraction of the thickness of the entire
construct,
2 1 46
6. First construct = IIR<Y (46)

: . . The length of the construct is
In this and the following sections we show that there

is an optimal number of elemental volumes that must be L1~ n1d (47)

grouped together, so that the power required to pump theTo minimize the overall pumping power when the flow rate
gas mixture is minimum. The construction sequence leads;’ is fixed, is the same as minimizing the total pressure drop.

to tree'Shaped flow structures of the hierarchical type that After using the geometric relations listed fﬂﬁ_, dq andLl,
have been constructed for heat flow and fluid flow [9,10, the total pressure drop assumes the form

14]. The elemental scales developed in Egs. (29)—(43) show 2 4

that the geometry of the elemental volume has two degreesap; — Ap + AP; 1 ~ mlv[ 1/d + (n1d) } (48)

of freedom, which are represented Wyand L, or by the (md)?  (¢1A1)3

independent parametessand A P. For the sake of clarity, ~ This expression shows the tradeoff role played by the
let us assume that the time scalés fixed on the basis of a  number of elements in the assembly. The pressure drop is

specified (desired) volumetric density afproduction i’ minimum when the two terms in the square brackets are of

cf. Eq. (41). In this case the transversal length schis the same order of magnitude, and this occurs when

fixed, while L increases aa PY/?, cf. Eq. (37). The size of 2/3

the elemental volumel(d) also increases as P1/2. n1opt~ (ﬂ) ¢1/2 (49)
Consider now the ‘first construct’ shown in Fig. 11, where d?

n1 elemental volumes are stacked and bathed in parallel byAt this optimum the slenderness of the elemental volume is
the total gas mixture streari) [kg-sm~1]. The global size

of the first construct4) is fixed, A1 ~ LL1, whereL1 is L <Al> ¢‘1/2 (50)

the total thickness of the stack; ~ n1d. In conclusion, the d d?

A1 size constraint reads The inequality sign is a reminder that the elemental volume

A was assumed to be slender, which is consistent with the
1~nidL (44)

geometric fact thad; > 42, and with the assumption that
in which n; and L may vary. The overall mass flow rate ¢, « 1. The corresponding aspect ratio of the first construct
'y is fixed becausely, 7”” and the overall rate of species s

production ¢ A1) are fixed. The pumping power that is I3 A\ 13

requwed to drivei through the construct is proportional to It (—;) 1 (51)

niy times the overaII pressure drop between the inlet and the L d

outlet of ther’ stream. The overall pressure drop has two Eq. (51) shows that the groug {/d2)/2 controls this aspect
terms,APy = AP 4+ APr1, andA Py is due to the flowin  ratio, as it did at the elemental level, Eq. (50). The difference
the L1 direction, which supplies each element. This second is the effect ofp1 (< 1), which makes the elemental volume
pressure drop can be estimated in an order of magnitudemore slender than the first construct.

sense by assuming again fully developed laminar flow, cf.  The overall pressure drop that is minimum when Eq. (49)

Eq. (36) and Fig. 11, holds is of order
dfAPLy rityv <A1>1/3
~olT s 45 AP~ — 52
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Becausen; scales asin’A1, where the volumetric flow 4
rate must be proportional t&”, the overall pressure drop —— | | | L]
: 2 . , —
increases as&l/ % as the overall size of the first construct m ¥ ! ¢ ¢

increases. In other words, the overall pressure drop increases

in direct proportion withns, cf., Eq. (49). The overall
Ay

pumping power required by the first construct is L
. de Ap 5/3 L
W/ ~ (m///)z_ (_) (53)
" pp1\d? | | | |
The proportionality betweel, andA>2 means that larger ! ¢ ! ¢ o
prop % 1 1 g —

first constructs require more power, and that the rate of |
power increase increases widhh. The question investigated

in the next section is whether it might be possible to slow Fig. 12. Second construct containing a large number of first constructs
down this trend, perhaps by using a flow configuration that supplied by a single stream.

differs from the choice made in Fig. 11.

L i

(59)

. (m///)ZUdZ AZ 7/5
7. Second construct Wa~ < >

6/5 ,3/5
pd ¢

Consider next the ‘second construct’ flow configuration
shown in Fig. 12. The size of this flow system 43 =
Li1Ly = npA1, wheren; is the number of first constructs
of the type shown in Fig. 11. In the following analysis we
assume that all the geometric features of eagttonstruct
have been optimized as shown in the preceding section.
The total flow raten’, is proportional to the overall size,
m’, =m"" Az, so that the specified volumetric flow raig”

Egs. (56)—(59) should be examined on the background
offered by the corresponding results obtained for the first-
construct configuration, Egs. (49)—(53). Although the rela-
tions are similar, the differences are the important features,
i.e., the basis on which the designer may choose between
using a first construct or a second construct. The most im-
portant feature is that the pumping power required by the

(or ") is respected. second construct increasesAags, which is a slower rate of
The overall pressure drop experiencedisyis AP, = increase than in the case of the first construct, Eq. (53).
APy + APpo, WhereA P is the scale of the pressure drop ~ |f we were to plot Egs. (53) and (59) as the power

along the channels of lengity and spacing.. We assume  required (W; 2) versus the overall sizeAq ), we would
again thatd, is a certain (small) fraction of the overall See that the two curves intersect. Léi_p = A = Az

dimension of the construct, represent the critical system size Whe‘ﬂq W2 We
do choose between the configurations of Figs. 11 and 12 so that
7hn P21 (54)  the required pumping power is the smalleréf and W.

We find that when the system size is smaller than ,,

It can be shown that the total pressure drop can be written 3She better configuration is the first construct. When the

" nol  (d?/A)Y3 size is greater thar;_», the preferred configuration is the
APy~ [¢3L3 nod2¢n } second construct. In this way we discovertiramsition from
8 /3 2\ 5/3 2\ 1/3 the first-construct fI_o_w pgttern to the second-construct flow
~ rithy [ <d > 1 <d_> } pattern. This transition is analogous to other flow pattern
P2¢3d2 \ A n23d2¢q \ A2 transitions covered by constructal theory, e.g., laminar-
(55) turbulent flow, and Bénard convection [1]. In the present

) ) ) . case, the intersection of Egs. (53) and (59) yields
The optimal number of constituents for whighP; is mini-

mum is A1_2 —3/4

~¢

n2,0pt ™~ ¢3/1O¢9/1O<A2> / (56) @ '
,0p

The optimized second construct is less slender than the

The corresponding aspect ratio, overall pressure drop, andoptimized first construct of the same size. Compare Eq. (51)

—9/4

2

>1 (60)

pumping power are with Eq. (57), and assume thay = A, and¢y = ¢ = ¢.
Lo 35 6/5( A2 1/5 The first-construct slenderness is proportiong tahile the
. ~ ¢ P, ( ) (57) second-construct slenderness is proportionaX3, which
! 35 is larger tharp because is much smaller than 1. Optimized
Py MoV (Az) (58) constructs become less slender, more square like, as their
d2¢6/ 5¢3/5 size and complexity increase.
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8. Higher-order constructs " 4
- 5 ds

The construction and optimization sequence that we | | |
started in Figs. 10-12 can be continued toward more o ! ! l
complex (compounded) flow structures that cover larger ’
spaces. At each new level of assembly, the analysis follows
the steps outlined in the preceding two sections. Here we A
report only the final results for the third construct, which is
defined in Fig. 13. L
This configurationis represented Ay = LoL3,d3/Ly =
$3 < 1, my = nam),, A3 =n3Az, and L3 = n3zL1, Where | | |
n3 is the number of second-order constructs assembled into i i I m;

Lo

the third-order construct. The flow architecture for which the -
overall pressure drop and pumping power are minimized is ] |
represented by r Lo |
_9/14 ,9/14 ,15/14 A3 2/7 Fig. ]:3. Third (_:onstruct containing a large number of second constructs
n3.opt™ @4 &' b3 (dZ ) (61) supplied by a single stream.
L3 37 _3/7.0/7( A3 1/7 whe_reqslz (= A2.channel A2) is the fix_ed_volume fract_ior_1 oc-
—~p 7 Py g ( ) (62) cupied by all the channels present insitie The maximiza-
L2 d? tion of qbfqbz subject to constraint (67) yields = 2¢12/3,
A Pa~ M3V A3 -5/ ¢2 = ¢12/4, and a minimized)i/é value that is proportional
3™ &7 67 3/7< ) (63) by
d2¢;," "¢, "5 to (¢12/3) 7>, '
G 2od? [ Ag\ ¥ At the second construct level, Eq. (64) shows thét
Wj ~ W( 3) (64) can be minimized by maximizing the produgt )%/ 7¢3
PP1 P2 93 which according to the preceding paragraph is proportional

Egs. (61)—(64) can be compared with the correspond-to (¢12)6/ 7¢3". The objective then is to maximize the group

ing results obtained for the optimized second construct, ¢12¢3 subject to the total channel volume constraint,

Egs. (56)—(59), to see when it is beneficial to change the flow -2 68
structure, from Figs. 12 and 13. Note that the third-construct $13= 203 + 912 _ . (68)
power requirement (64) increases more slowly with the size Where ¢13 (= A3 channel{ A3) is the volume fraction oc-
of the construct than in Eq. (59). Consequently, by intersect- cupied by all the channels in the third construct. The

ing the curves (59) and (64) we find the transition size 3 maximization of ¢7,¢3 subject to constraint (68) yields

whereA, = Az and W2 = W3, ¢3 = ¢13/10, ¢p12 = 4¢13/5, and aW3 value proportional

Az . o4 15 to (¢13/1.895 17, Inside each of the second constructs
¢1¢2 / b5 / (65) present inAs, the overall channel volume is distributed

in accordance with the distribution @fi2, namely,¢; =

In the sequence started by Egs. (53), (59) and (64)is (2/3)¢p12 = (8/15)¢p13, and g2 = (1/4)¢p12 = (1/5)¢p13. In
proportional toA™, where the exponent m decreases as the summary, the ‘internal’ volume fractions decreagg &
series 33,7/5,9/7,11/9,13/11,.... This suggests that in  ¢2 > ¢3 > ---) as the length scale of each new channel in-
sufficiently complex and large construcis,approaches 1,  creases.
andW’ is proportional to the sizd. Another way to summarize the optimization of channel

The distribution of the channel volume fractions over the volume distribution is to note that starting with Eq. (53)
many scales that are present in the dendritic flow structurethe pumping powern(W;, W;, W, ...) is proportional to
(¢1, 92, ¢3, . ..) can be optimized further, with the objective ¢—1 b1 9/5 ¢*15/7, . In this sequenceps, ¢1» and ¢13
of minimizing the overall pumping power requirement. For represent the overall channel volume fraction of the con-
example, Eq. (59) shows that) can be minimized by  struct. The exponents1, —9/5, —15/7, ... suggest the se-

maX|m|Z|ng¢6/5q>‘°’/5 which is equivalentto maximizingthe quence —3/3,-3 x 3/5,-3 x 5/7,-3 x 7/9,-3 x

group¢l¢2 The fractionsp; andgs are related throughthe  9/11,..., which shows how the overall channel volume

overall channel volume constraint fraction affects the overall pumping power requirement.

Ao chamnels  2d2L> +nadiLy The external aspect ratios of the flow structures decrease
’A = 1 (66) as the constructs become larger and more complex. The

or 2 2 aspect ratios of Egs. (51), (57) and (62) are summarized by

L; LA
b12=2¢2+ ¢1 (67) Li_lwqb (ﬁ) (69)
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where the exponents decreage= 1,3/5,9/35,...; ¢ = that they deserve to be pursued in the quest for mass

1/3,1/5,1/7,...) as the order of the construct (i) increases. exchangers with maximal concentration of mass per unit

This means that the external shape of the flow structurevolume. To cover this fundamental territory, we used the

approaches a square as the size and order of the desigsimplest models. Future studies may consider these issues

increase. based on more complex and more realistic models. The
fundamental aspect of the time and space tradeoffs identified
in this paper assures us that similar tradeoffs will rule

9. Conclusions optimization in more refined descriptions of adsorption-
desorption processes.

In this paper we used simple modeling and analysis to  Another expected trend is that of increasing robustness as
show how adsorption processes can be optimized in timethe complexity of the flow structure increases [1]: complex
and space. In the first part of the paper, we used severalstructures tend to exhibit near-optimal performance even
models to show that the periodicity of an adsorption processthough they may not match in every detail the geometry of
can be optimized. For example, when the desorption time the ultimate (optimal) design. This trend makes the construc-
is fixed, the time interval allocated to adsorption can be tal sequence (Sections 5-8) a valuable and direct path to de-
optimized as shown in Fig. 2. More general versions of signs that are complex and sufficiently optimized to oper-
this optimization opportunity are presented in Fig. 6 for ate at near-optimal levels. Future work may also search for
processes with variable desorption times, and in Fig. 9 for improvements in the constructal method, for example, more
processes with variable concentration in the gas space. direct (analytical) strategies for the optimal structure. One

In each case, the demonstration was based on the simplestecent development is the proposal to minimize flow path
possible model for the sake of simplicity. The modeling was lengths [15] instead of minimizing fluid flow resistance at
focused mainly on the adsorption phase. To describe theevery level of assembly [16]. A comparison between the two
desorption phase we used a group of global parameters suclmethods [15,16] shows that the minimization of flow path
as the time interval, which was allowed to vary inthe more  lengths is considerably more direct and surprisingly accu-
general model of Section 3. Future studies may reconsiderrate. This lends even more support to the view that optimized
the time-optimization opportunity by modeling the entire dendritic flow structures are robust, and that many classes of
cycle of adsorption and desorption, i.e., by accounting for near-optimal designs perform nearly as well as the optimal
the coupling between the two phases of the cycle. The design.
main reason for using the simplest model first is also the
main conclusion: there exist opportunities to optimize the
periodicity of size-constrained mass transfer devices. Acknowledgement
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