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Abstract

This paper shows that the temporal and spatial structure of adsorption–desorption processes can be optimized for maximal
mass transfer into a fixed space, and for minimal overall pumping power. In the first part of the paper, simple models demons
the periodicity of such processes can be optimized in three settings: fixed desorption time, variable desorption time, and variab
concentration in the gas space. The second part of the paper shows how the optimized time scales determine the dimensions of
flow channels—the elemental system. The available space can be packed with elemental systems in a hierarchical (constructa
[Bejan, Shape and Structure, from Engineering to Nature, Cambridge University Press, 2000], in which elements are assemble
constructs, first constructs are assembled into second constructs, etc. The robustness and nearly optimal performance of the opt
exchanger structure is discussed.
 2003 Éditions scientifiques et médicales Elsevier SAS. All rights reserved.
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1. Introduction

In this paper we apply the constructal method [1] to
hierarchical multi-scale design of absorption systems w
maximum “density” per unit volume and time. In all a
sorption separation processes, the essential requirem
an adsorbent that adsorbs preferentially one componen
one family of related components) from a mixed feed. T
selectivity may depend on a difference in adsorption e
librium (equilibrium-selective) or on a difference in sor
tion rates (kinetically-selective) [2,3]. Adsorption separat
processes involve two principal steps:

(i) adsorption, during which the preferentially adsorb
species are removed from the feed;

(ii) regeneration or desorption, during which these spe
are removed from the adsorbent, thus regenerating
adsorbent for use in the next cycle.

It is possible to obtain useful products from either the
sorption or desorption steps, or from both steps. The m
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s
r

anism used in the desorption step differentiates the s
ration processes into two classes. When the removal i
duced by reducing the pressure the process is called
sure Swing Adsorption process (PSA). When it is indu
by raising the temperature it is called Thermal Swing A
sorption process. Major applications of the kinetically a
sorption processes are the production of nitrogen by air
aration and separation of hydrocarbons from gas mixt
[3].

The intermittent nature of the adsorption processes m
it suitable for optimization of the times involved. In equili
rium-selective processes, however, cycle times are no
direct variable to control, because equilibrium is reached
most instantly and mass transfer rates are not so impo
[4]. Instead, the variables that are more suitable for o
mization refer to flow rates and geometrical features [5]
kinetically-selective processes, the cycle times are the
ables to control, because mass transfer rates are most im
tant [6].

Optimization of the cycle times can be carried out
order to select several variables. For example, one can a
the pressurization and depressurization times to obta
product with maximum purity, or the maximum amount
product per unit time, or production with minimum cost
sevier SAS. All rights reserved.
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Nomenclature

a dimensionless adsorbed quantity
ā dimensionless time-averaged rate ofA

production
A area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m2

CA concentration of speciesA in the solid
adsorbent . . . . . . . . . . . . . . . . . . . . . . . . kmol·m−3

CAg concentration of speciesA in the gas kmol·m−3

CAs concentration of speciesA in the solid–gas
surface . . . . . . . . . . . . . . . . . . . . . . . . . . kmol·m−3

d gas layer thickness . . . . . . . . . . . . . . . . . . . . . . . m
d channel spacing . . . . . . . . . . . . . . . . . . . . . . . . . . m
ds solid layer thickness . . . . . . . . . . . . . . . . . . . . . . m
dw mechanical strength layer thickness . . . . . . . . m
D mass diffusivity ofA in the gas mixture m2·s−1

Ds mass diffusivity ofA in the solid . . . . . . m2·s−1

jA mass flux of speciesA . . . . . . . . . kmol·m−2·s−1

j̄A time-averaged mass flux of
speciesA . . . . . . . . . . . . . . . . . . . . kmol·m−2·s−1

K Henry coefficient
KA Henry coefficient of speciesA
K0 Henry coefficient at infinite temperature
L length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
ṁ′ mass flow rate per unit length . . . . . kg·s−1·m−1

ṁ′′ volumetric rate of gas flow . . . . . . . kg·m−3·s−1

n number of stacked elements
ṅ volumetric rate of species

removal . . . . . . . . . . . . . . . . . . . . . . kmol·m−3·s−1

P pressure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pa
r solid and gas layers thickness ratio
R universal gas constant . . . . . . . . . J·kmol−1·K−1

Sc Schmidt number
T temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K
t time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . s

U velocity of gas mixture . . . . . . . . . . . . . . . . m·s−1

Um overall mass transfer coefficient . . . . . . . . m·s−1

Ẇ ′ pumping power . . . . . . . . . . . . . . . . . . . . . W·m−1

W̃ dimensionless pumping power
yA molar fraction of speciesA

Greek symbols

�C concentration difference . . . . . . . . . . . kmol·m−3

�P pressure drop . . . . . . . . . . . . . . . . . . . . . . . . N·m−2

�PL pressure drop along channel . . . . . . . . . . N·m−2

�U activation energy . . . . . . . . . . . . . . . . . . J·kmol−1

θ dimensionless time
µ viscosity . . . . . . . . . . . . . . . . . . . . . . . kg·s−1·m−1

ν kinematic viscosity . . . . . . . . . . . . . . . . . . m2·s−1

ρ density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kg·m−3

τ desorption–adsorption times ratio
φ volume fraction occupied by flow channel

Subscripts

0 initial
1 adsorption step, or first construct
2 desorption step, or second construct
3 third construct
a adsorption
A speciesA
B speciesB
d desorption
eq equilibrium
f final
max maximum
opt optimum
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minimum exergy destruction. Several publications desc
the relationships between cycle times and product pu
[6–8] and lost exergy [7].

In the first part of this paper we show that the time
tervals of the production cycle can be optimized in orde
achieve the maximum time-average rate of production. T
class of optimal times adds to the list of engineered syst
that have an optimized intermittent operation [1], and
quire structure in time. The time models are the simpl
and the results may seem trivial, but this is intentional.
want to show in the most basic sense that opportunitie
optimize rhythm exist. In the second part of the paper
consider the spatial construction of a volume designed
maximum absorptiondensity. As in maximum-compactnes
architectures for heat exchangers [9] and animal body i
lation [10], the flow structure consists of two trees match
canopy to canopy. The smallest (elemental) volume s
with which the constructal sequence begins is dictated
the diffusion length associated with the optimized time sc
optimized in the first part of the paper.

2. Fixed desorption time

In the following analysis we consider the simplest mo
that retains the main features of the process. Fig. 1 sh
the system model. The following assumptions are ma
there are two gaseous components (A andB), the process
is modeled as ‘open batch’ (meaning that the length sca
omitted in the analysis; this is valid whenUm/U � d/L),
the concentration of each component is constant in the
the equilibrium between gas and the solid–gas interfac
dictated by Henry’s law, and there is mass transfer from
solid–gas interface to the solid adsorbent for only one
the components (A), and the desorption time is fixed. The
simplifying assumptions are discussed further in Sectio
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Fig. 1. Top: Channel filled with a gaseous mixture, and transve
adsorption of speciesA in the adsorbing wall. Bottom: Sequence of tw
adsorption (θ1) – desorption (θ2) cycles.

Adsorption proceeds in the direction perpendicular to
gas–solid interface, and is located at the surface.

As shown in Fig. 1,CAg,CAs andCA are, respectively
the concentrations of speciesA in the gas, solid–gas inte
face (surface) and solid adsorbent. The mass balanc
speciesA at the solid surface requires

dCA

dt
= Um

ds
(CAs −CA) (1)

HereUm is the global coefficient of mass transfer for t
speciesA. It is assumed that only speciesA is adsorbed. In
the adsorption stepCAs is greater thanCA, and speciesA
flows from gas to solid. In the desorption stepCAs is smaller
thanCA, and speciesA flows from solid to gas. The initia
condition is

CA = CA0 at t = 0 (2)

In the case of adsorption,CA0 represents the residual co
centration in the preceding desorption step. When Eqs
and (2) refer to desorption,CA0 represents the final conce
tration of the adsorption step. Henry’s law provides a re
tionship between the gas and surface concentration

CAs = KACAg (3)

whereKA is the Henry coefficient for the equilibrium solid
gas of speciesA. In this model, the concentration ofA in
the gas (CAg) is assumed constant. This assumption will
relaxed in Section 4.

The two-component gas is modeled as an ideal
mixture, thereforeCAg is given by

CAg = PA

RT
= yAP

RT
(4)

where PA,yA,R,T and P are the partial pressure o
componentA, the molar fraction of componentA, the
r

universal gas constant, the temperature and the total pre
of the gas mixture. The concentration ofA in the gas (CAg)
can be changed by changingP (Pressure Swing Adsorption
or by changingT (Thermal Swing Adsorption). By solvin
Eqs. (1)–(3), we calculate the amount of adsorbed speciA

a = 1− exp(−θ) (5)

where

a = CA −CA0

KACAg −CA0
, θ = Um

ds
t (6)

The dimensionless adsorbed quantity (a) takes values be
tween 0 and 1. The limita = 0 means that the solid su
face has not adsorbed yet, and the concentration of specA

in the solid is at the residual concentration levelCA0. The
other extreme,a = 1, means that solid has adsorbed all
A of which it is capable of adsorbing, i.e., the concen
tion of A in the solid is at the maximum level possible,CAs .
The dimensionless timeθ is unrestricted, and can take va
ues higher or lower than 1.

In a complete optimization of the cycle, the adsorpt
and desorption processes are coupled and must be optim
together. For simplicity, in this section we model only t
adsorption process. For the desorption process we as
that the time allocated to it is fixed,θ2. The adsorption time
is variable,θ1. Even when the desorption mechanism is
specified, the time can be controlled as we show late
Eq. (18): a pair of times (θ1, θ2) can be obtained by selectin
the propera0 for the desorption mechanism. The low
portion of Fig. 1 shows a sequence of two complete cyc
The time-averaged rate ofA production, or the average flo
of speciesA from the gas to the solid, is proportional to t
dimensionless quantity

ā = a1

θ1 + θ2
= 1− exp(−θ1)

θ1 + θ2
= 1− exp(−θ2τ )

θ2(τ + 1)
(7)

wherea1 is the total amount ofA adsorbed duringθ1, andτ
is the time ratio

τ = θ1

θ2
(8)

According to the first of Eqs. (6),̄a takes values in the 0–
range, and is equal to

ā = j̄A

jA,max
(9)

wherej̄A is the time-averaged mass flux of the producedA,

j̄A = CA1 −CA0

t1 + t2
(10)

andjA,max is the maximum mass flux, which occurs at t
start of the adsorption process, cf. Eq. (1),

jA,max= Um

ds
(KACAg −CA0) (11)

The time of adsorptionθ1 can be selected such thatā is
maximum. Fig. 2 shows the variation ofā with τ for several



986 A. Rivera-Alvarez, A. Bejan / International Journal of Thermal Sciences 42 (2003) 983–994

hen

d

lso

t-
sist
r
-
me

d

rp-

time

by
pres-
des-

is
ature

n-
rsal
the

lues

e of
t
l

s
ion
Fig. 2. The maximization of the time-averaged adsorption rate (ā) when the
desorption time interval (θ2) is fixed.

Fig. 3. The optimal time ratio and maximal average adsorption rate w
the desorption process is not specified.

values ofθ2. There exists an optimalτ (or θ1) for which the
average rate ofA production is maximum. The maximize
production rate (̄amax) is higher whenθ2 is shorter. By
solving ∂ā/∂τ = 0 we determine the relation betweenτopt
andθ2,

1+ θ2(τopt + 1)= exp(θ2τopt) (12)

Combining this relation with Eq. (7) we obtain̄amax as a
function of θ2, as shown in Fig. 3. The same figure a
showsτopt as a function ofθ2.

3. Variable desorption time

In the analysis presented in this section the constanθ2
assumption is not made. The desorption process con
of placing the solid in contact with a fluid of lowe
concentration ofA. As shown in Fig. 4, during the two
stroke cycle two gaseous mixtures interact with the sa
solid, one mixture during adsorption (θ1,CAga > CA), and
another during desorption (θ2,CAgd < CA). We continue to
assume that the concentrations ofA at the surface are relate
to the concentrations in the gas through Henry’s law,

CAsa = KAaCAga, CAsd = KAdCAgd (13)

HereKAa andKAd are the Henry constants for the adso
tion and desorption steps, respectively.
s

Fig. 4. Sequence of two adsorption–desorption cycles in which the two
intervals (θ1, θ2) may vary.

The concentration ofA in the gas can be changed
changing the pressure or the temperature. When the
sure is changed, the Henry constants for adsorption and
orption are the same,KAa = KAd . When the temperature
changed, the Henry constants are related to the temper
through the van’t Hoff relation

K = K0 exp(−�U/RT ) (14)

whereK,K0,�U andR are the Henry constant, Henry co
stant at infinite temperature, activation energy, and unive
gas constant. By solving Eqs. (1), (2) and (13) we obtain
amount of adsorbed speciesA during the adsorption step

a = 1− (1− a0)exp(−θ) (15)

This is equal to the amount ofA removed during the
desorption step

a = af exp(−θ) (16)

where the dimensionless adsorbed quantity (a) takes va
between 0 and 1

a = CA −KAdCAgd

KAaCAga −KAdCAgd

(17)

The limit a = 0 means that the concentration ofA in
the solid is at the minimum level possible (CAsd ), i.e.,
equilibrium has been achieved with the gaseous mixtur
the desorption step. The other extreme,a = 1, means tha
the concentration ofA in the solid is at the maximum leve
possible (CAsa), i.e., the solid is in equilibrium with the
gaseous mixture of the adsorption step. The quantitiea0
andaf refer to the final concentrations after the desorpt
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Fig. 5. The maximization of the averaged rate of species-A production, by
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and the adsorption steps, respectively. Combining Eqs.
and (16) yields the relation betweenθ1 andθ2,

θ1 = − ln

(
1− a0 exp(θ2)

1− a0

)
(18)

The time-averaged rate ofA production is proportional to

ā = af − a0

θ1 + θ2
= a0[exp(θ2)− 1]

θ2(τ + 1)
(19)

whereτ is given by Eq. (8). Eq. (9) continues to apply, w
jA,max given by

jA,max= Um

ds
(KAaCAga −KAdCAgd) (20)

Fig. 5 shows the variation of̄a with a0 for several
values of θ2. This figure was constructed by combini
Eqs. (18) and (19). There exists an optimal a0 for which the
average rate ofA production is maximum. The optimala0

is equivalent to an optimal combination of parametersθ1, τ

and af . The maximized production rate (āmax) is higher
when θ2 is shorter. Solving∂ā/∂a0 = 0 with θ2 constant,
we obtain an implicit relation betweena0,opt andθ2,

θ2 + a0,opt[1− exp(θ2)]
(1− a0,opt)[1− a0,optexp(θ2)]

= ln

(
1− a0,optexp(θ2)

1− a0,opt

)
(21)

Combining this with Eqs. (16), (18) and (19) we obta
af,opt, τopt and āmax as functions ofθ2. These results ar
reported in Figs. 6 and 7. The trends reported in Fig. 7
similar to what we obtained based on the simpler mode
Fig. 3. This time the transition from small-θ2 behavior to
large-θ2 behavior is considerably steeper, and is locate
a higherθ2 range than in Fig. 3. Asθ2 increases, the ga
widens between theaf anda0 values corresponding to th
optimized cycle (Fig. 7).
Fig. 6. The optimal time ratio and maximal average adsorption rate b
on the model of Fig. 4.

Fig. 7. The gap between theaf and a0 values corresponding to th
optimized cycle of Fig. 4.

4. Variable concentration of species A in the gas
mixture

Consider now the case when the concentration ofA in the
gas is not fixed. During adsorption, the concentration ofA in
the gas mixture decreases while the concentration ofA in the
solid increases. The concentrations ofA in solid and gas are
represented by two values,CAg andCA, which are functions
of time. The concentration variation across the gas spa
neglected. TheCAg andCA values are related through th
species conservation statement

CAg −CAg0 = −r(CA −CA0) (22)

whereCAg0 is the initial concentration ofA in the gas, and
r is the ratio of the solid and gas layers thicknesses (Fig

r = ds

d
(23)

The equilibrium concentration ofA in the solid (i.e., the
concentration reached when the mass transfer betwee
and solid ceases) can be calculated from Eq. (22)
Henry’s law at equilibrium,

CA,eq= KACAg0 + rKACA0
(24)
1+ rKA
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Fig. 8. Sequence of adsorption–desorption cycles with time-depen
concentration in the gas space.

From Eqs. (1)–(3) and (22) we can calculate the amoun
adsorbedA,

a = 1− exp[−θ(1+ rKA)]
1+ rKA

(25)

where

a = CA −CA0

KACAg0 −CA0
= CA −CA0

(CA,eq−CA0)(1+ rKA)
(26)

In this formulation, parameter a takes values between 0
CA = CA0, and 1/(1+ rKA) for CA = CA,eq.

Consider an adsorption–desorption cycle (Fig. 8), wh
the desorption mechanism is unknown but takes a fi
time θ2. During adsorption, the concentration in the so
increases, and the concentration in the gas decreases.
concentrations tend to the equilibrium concentration,a =
1/(1 + rKA). The time-averaged rate ofA production is
proportional to

ā = a1

θ1 + θ2
= 1− exp[−θ1(1+ rKA)]

(θ1 + θ2)(1+ rKA)

= 1− exp[−θ2τ (1+ rKA)]
θ2(τ + 1)(1+ rKA)

(27)

where, according to thēa definition (9),jA,max is

jA,max= Um

ds
(KACAg0 −CA0) (28)

We find that the variation of̄a with τ for several values
of θ2(1 + rKA) is the same as in Fig. 2, ifθ2 is replaced
by θ2(1 + rKA). There exists an optimalτ (or θ1) for
which the average rate ofA production is maximum. Solving
∂ā/∂τ = 0 we arrive at the equation forτopt,

1+ θ2(1+ rKA)(τopt + 1) = exp
(
θ2(1+ rKA)τopt

)
(29)

which has the same form as Eq. (12). The correspondingτopt
and āmax may be viewed in Fig. 3 as functions ofθ2(1 +
rKA), if on the abscissa we replaceθ2 with θ2(1 + rKA).
Fig. 9 showsτopt and āmax as functions ofθ2 for several
values ofrKA.

5. Elemental volume

In Sections 2–4 we considered the optimization of
timing of the adsorption and desorption steps. Three mo
h

Fig. 9. The optimal time ratio and maximal adsorption rate for the mode
Fig. 8.

Fig. 10. Elemental volume with longitudinal gas flow and transve
diffusion length scales.

we analyzed, and each led to the conclusion that an opt
adsorption time exists when the desorption time (θ2) is
specified. In particular, Figs. 3 and 6 showed that in the li
of short desorption times (θ2 � 1) the optimal time ratio
is τ = 1, or θ1,opt = θ2, and t1,opt = t2. In this limit both
time intervals are short, and, according to Eq. (10), the m
transfer rate is high. In conclusion, short and optimized tim
are attractive from the point of view of building high-dens
devices for adsorption and desorption.

In this section we explore the packing (compactne
implications of the above observation. Short times a
mean small length scales. How should a macroscopic de
of specified volume be filled with a large number
working channels of the type (e.g., Fig. 1) analyzed in
preceding material? Earlier constructal optimization stud
have shown that optimal timing requires optimal allocat
and arrangement of working material in space [1]. Temp
organization goes hand in hand with spatial organizat
when the objective is to achieve the most with a device
specified size—the most per unit volume.

We pursue this objective in the direction from sm
to large, hierarchically, in accordance with the constru
method [1]. The start is the smallest identifiable finite-s
unit that performs the intended function of adsorption a
desorption. That unit is the “elemental volume” sketched
Fig. 10. For the gas volume to work best, i.e., without d
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spaces that do not participate, its transversal length scal(d)

must match the length penetrated by mass diffusion du
adsorption,

d ∼ (Dt1)
1/2 (30)

In this scale analysisD is the mass diffusivity of speciesA
in the gas mixture, and “∼” stands for “equal in an order o
magnitude (scaling) sense” [11]. The same argument h
for the thickness of solid layer that acts as adsorbent,

ds ∼ (Dst1)
1/2 (31)

whereDs is the mass diffusivity ofA in the solid. Finally, the
same length scales must be penetrated by diffusion du
the desorption step,

d ∼ (Dt2)
1/2, ds ∼ (Dst2)

1/2 (32)

Combining Eqs. (31) and (32) we arrive at the geome
requirement that the adsorption and desorption times m
be of the same order of magnitude,

t1 ∼ t2 (33)

and that the transversal length scales of the eleme
volume must be in a certain proportion,

ds

d
∼

(
Ds

D

)1/2

(34)

Eq. (33) is the same as the equality of the two time stro
observed in respiration (inhaling, exhaling) and blood
culation (heart beating) [1]. UsingDs ∼ 10−10 m2·s−1 and
D ∼ 10−5 m2·s−1 as representative orders of magnitude
diffusion in solid and gas, we estimateds/d ∼ 10−2: The
layer of adsorbent that works duringt1 and t2 is consider-
ably thinner than the channel filled with gas. Because of
chanical strength requirements, the actual solid layer ma
thicker thands . Alternatively, ads -thick layer of adsorben
may be deposited on a wall of another material of thickn
dw, which provides the needed mechanical strength.

The longitudinal length scale, or the slenderness of
elemental volume is furnished by the same requirem
of squeezing the most performance out of the eleme
volume. The gas channeld × L is used entirely when it is
traversed by mass diffusion during the same time inte
that the gas mixture resides in the channel. Said another
duringt1 the gas flow sweeps the entire length

L = Ut1 (35)

whereU is the mean velocity of the gas mixture. This mea
that at the channel exit the thickness of the concentra
boundary layers is comparable with the diffusion lengthd ,
or that the boundary layers merge just as the gas leave
channel.

To estimate theU scale we assume that the channe
narrow and long enough that the flow regime is laminar
fully developed,

U ∼ d2�P
(36)
µL
l

,

e

where �P is the pressure difference maintained in
longitudinal direction. Eq. (36) means that the entra
length for the development of the velocity profile is shor
than L. Conversely, sinceL is the entrance length fo
the development of the concentration profile, the use
Eq. (36) means that the momentum diffusivity is larger th
the mass diffusivity (ν > D), or that Sc > 1. Combining
Eqs. (29), (35) and (36) we find the relation between the
dimensions of the channel,

L

d2
∼

(
�P

µD

)1/2

(37)

Eq. (37) is the mass transfer analog of the principle of pa
ing maximum heat transfer in a given volume [1,11–1
When the time scalet1 (or t2) decreases, the transvers
length scale(d) decreases ast1/2

1 , and the longitudinal scal
decreases ast1, i.e., faster thand . We can always imagine
t1 scale so small that the calculatedL is smaller thand : such
a case violates the slender channel assumption that s
as basis for the boundary layer and Hagen–Poiseuille
assumptions made earlier in this analysis. Consequently
invoke the channel slenderness constraintL/d > 1, which
in combination with Eqs. (37) and (29) yields the followi
criteria for the validity of this analysis:

d >

(
µD

�P

)1/2

(38)

t1 >
µ

�P
(39)

In summary, when the time scalet1 (or t2) is specified, all
the dimensions of the elemental volume can be calcul
from the requirement that the entire elemental volume m
be used with purpose: to adsorb and desorb the sp
of interest. How well is the optimized elemental geome
performing? In other words, what quantity of speciesA is
being removed from the gas mixture per unit volume a
per unit time? We answer by continuing to assume that
geometry is two-dimensional, i.e., the elemental volum
represented by the areaL × d , when thed scale is greate
than(ds +dw). The quantity of interest is related to the ma
flux scale associated with the time scalet1,

jA ∼ D
�C

d
∼ �C

(
D

t1

)1/2

(40)

where�C is the scale of the concentration difference, e
CAs − CA in Eq. (1). The total amount ofA removed from
the gas mixture by one elemental volume during one cyc
of orderjALt1. The units of the groupjALt1 are kmol·m−1,
that is the amount ofA per unit of length perpendicular t
theL × d plane. The rate ofA removal per unit volume an
per unit time isṅ′′′ = (jALt1)/(Ldt1), or

ṅ′′′ ∼ D
�C

2 ∼ �C
(41)
d t1
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49)
This quantity increases sharply ast1 decreases. The large
ṅ′′′ that can be estimated based on this slender-cha
formulation is obtained by combining Eq. (41) with Eq. (3

ṅ′′′ < �C�P

µ
(42)

Theṅ′′′ estimate of Eq. (41) can also be derived from
conservation of species argument. The cycle-averaged
at which speciesA is brought into the elemental volum
by the gas mixture,�CUd , must be the same as the ra
at which the elemental volume removes speciesA from the
mixture,ṅ′′′Ld . This balance means

ṅ′′′ ∼ �C
U

L
(43)

which, after using theU andL scales derived earlier, lead
to Eq. (41).

6. First construct

In this and the following sections we show that the
is an optimal number of elemental volumes that must
grouped together, so that the power required to pump
gas mixture is minimum. The construction sequence le
to tree-shaped flow structures of the hierarchical type
have been constructed for heat flow and fluid flow [9,
14]. The elemental scales developed in Eqs. (29)–(43) s
that the geometry of the elemental volume has two deg
of freedom, which are represented byd andL, or by the
independent parameterst1 and�P . For the sake of clarity
let us assume that the time scalet1 is fixed on the basis of
specified (desired) volumetric density ofA production,ṅ′′′,
cf. Eq. (41). In this case the transversal length scaled is
fixed, whileL increases as�P 1/2, cf. Eq. (37). The size o
the elemental volume (Ld) also increases as�P 1/2.

Consider now the ‘first construct’ shown in Fig. 11, whe
n1 elemental volumes are stacked and bathed in paralle
the total gas mixture streaṁm′

1 [kg·s·m−1]. The global size
of the first construct (A1) is fixed,A1 ∼ LL1, whereL1 is
the total thickness of the stack,L1 ∼ n1d . In conclusion, the
A1 size constraint reads

A1 ∼ n1dL (44)

in which n1 andL may vary. The overall mass flow ra
ṁ′

1 is fixed becauseA1, ṅ
′′′ and the overall rate of specie

production (̇n′′′ A1) are fixed. The pumping power that
required to driveṁ′

1 through the construct is proportional
ṁ′

1 times the overall pressure drop between the inlet and
outlet of theṁ′ stream. The overall pressure drop has t
terms,�P1 = �P + �PL1, and�PL1 is due to the flow in
theL1 direction, which supplies each element. This sec
pressure drop can be estimated in an order of magni
sense by assuming again fully developed laminar flow,
Eq. (36) and Fig. 11,

U1 ∼ d2
1�PL1

(45)

µL1
l

Fig. 11. First construct containing a large number of elemental volu
supplied by a single stream.

whereU1 ∼ ṁ′
1/(ρd1). We assume that the spacingd1 scales

with, and is a small fraction of the thickness of the en
construct,

d1

L
= φ1 � 1 (46)

The length of the construct is

L1 ∼ n1d (47)

To minimize the overall pumping power when the flow ra
ṁ′ is fixed, is the same as minimizing the total pressure d
After using the geometric relations listed forA1, d1 andL1,
the total pressure drop assumes the form

�P1 = �P +�PL1 ∼ ṁ′
1ν

[
A1/d

2

(n1d)2
+ (n1d)

4

(φ1A1)3

]
(48)

This expression shows the tradeoff role played by
number of elements in the assembly. The pressure dro
minimum when the two terms in the square brackets ar
the same order of magnitude, and this occurs when

n1,opt ∼
(
A1

d2

)2/3

φ
1/2
1 (49)

At this optimum, the slenderness of the elemental volum

L

d
∼

(
A1

d2

)1/3

φ
−1/2
1 � 1 (50)

The inequality sign is a reminder that the elemental volu
was assumed to be slender, which is consistent with
geometric fact thatA1 � d2, and with the assumption tha
φ1 � 1. The corresponding aspect ratio of the first const
is

L1

L
∼

(
A1

d2

)1/3

φ1 (51)

Eq. (51) shows that the group (A1/d
2)1/3 controls this aspec

ratio, as it did at the elemental level, Eq. (50). The differe
is the effect ofφ1(� 1), which makes the elemental volum
more slender than the first construct.

The overall pressure drop that is minimum when Eq. (
holds is of order

�P1 ∼ ṁ′
1ν

2

(
A1

2

)−1/3

(52)

d φ1 d
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d
their
Becauseṁ′
1 scales asṁ′′′A1, where the volumetric flow

rate must be proportional tȯn′′′, the overall pressure dro
increases asA2/3

1 as the overall size of the first constru
increases. In other words, the overall pressure drop incre
in direct proportion withn1, cf., Eq. (49). The overal
pumping power required by the first construct is

Ẇ ′
1 ∼ (ṁ′′′)2

νd2

ρφ1

(
A1

d2

)5/3

(53)

The proportionality betweeṅW ′
1 andA5/3

1 means that large
first constructs require more power, and that the rate
power increase increases withA1. The question investigate
in the next section is whether it might be possible to s
down this trend, perhaps by using a flow configuration t
differs from the choice made in Fig. 11.

7. Second construct

Consider next the ‘second construct’ flow configurat
shown in Fig. 12. The size of this flow system isA2 =
L1L2 = n2A1, wheren2 is the number of first construc
of the type shown in Fig. 11. In the following analysis w
assume that all the geometric features of eachA1 construct
have been optimized as shown in the preceding sec
The total flow rateṁ′

2 is proportional to the overall size
ṁ′

2 = ṁ′′′A2, so that the specified volumetric flow ratėm′′′
(or ṅ′′′) is respected.

The overall pressure drop experienced byṁ′
2 is �P2 =

�P1 +�PL2, where�PL2 is the scale of the pressure dr
along the channels of lengthL2 and spacingd2. We assume
again thatd2 is a certain (small) fraction of the overa
dimension of the construct,

d2

L1
= φ2 � 1 (54)

It can be shown that the total pressure drop can be writte

�P2 ∼ ṁ′
2ν

[
n2L

φ3
2L

3
1

+ (d2/A1)
1/3

n2d2φ1

]

∼ ṁ′
2ν

[
n

8/3
2

φ2
1φ

3
2d

2

(
d2

A2

)5/3

+ 1

n
2/3
2 d2φ1

(
d2

A2

)1/3]
(55)

The optimal number of constituents for which�P2 is mini-
mum is

n2,opt ∼ φ
3/10
1 φ

9/10
2

(
A2

d2

)2/5

(56)

The corresponding aspect ratio, overall pressure drop,
pumping power are

L2

L1
∼ φ

−3/5
1 φ

6/5
2

(
A2

d2

)1/5

(57)

�P2 ∼ ṁ′
2ν

d2φ
6/5

φ
3/5

(
A2

d2

)−3/5

(58)

1 2
s

Fig. 12. Second construct containing a large number of first const
supplied by a single stream.

Ẇ ′
2 ∼ (ṁ′′′)2νd2

ρφ
6/5
1 φ

3/5
2

(
A2

d2

)7/5

(59)

Eqs. (56)–(59) should be examined on the backgro
offered by the corresponding results obtained for the fi
construct configuration, Eqs. (49)–(53). Although the re
tions are similar, the differences are the important featu
i.e., the basis on which the designer may choose betw
using a first construct or a second construct. The most
portant feature is that the pumping power required by
second construct increases asA

7/5
2 , which is a slower rate o

increase than in the case of the first construct, Eq. (53).
If we were to plot Eqs. (53) and (59) as the pow

required(Ẇ ′
1,2) versus the overall size (A1,2), we would

see that the two curves intersect. LetA1−2 = A1 = A2

represent the critical system size wherėW ′
1 = Ẇ ′

2. We
choose between the configurations of Figs. 11 and 12 so
the required pumping power is the smaller ofẆ ′

1 and Ẇ ′
2.

We find that when the system size is smaller thanA1−2,
the better configuration is the first construct. When
size is greater thanA1−2, the preferred configuration is th
second construct. In this way we discover thetransition from
the first-construct flow pattern to the second-construct fl
pattern. This transition is analogous to other flow patt
transitions covered by constructal theory, e.g., lamin
turbulent flow, and Bénard convection [1]. In the pres
case, the intersection of Eqs. (53) and (59) yields

A1−2

d2 ∼ φ
−3/4
1 φ

−9/4
2 � 1 (60)

The optimized second construct is less slender than
optimized first construct of the same size. Compare Eq.
with Eq. (57), and assume thatA1 = A2 andφ1 = φ2 = φ.
The first-construct slenderness is proportional toφ, while the
second-construct slenderness is proportional toφ3/5, which
is larger thanφ becauseφ is much smaller than 1. Optimize
constructs become less slender, more square like, as
size and complexity increase.
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8. Higher-order constructs

The construction and optimization sequence that
started in Figs. 10–12 can be continued toward m
complex (compounded) flow structures that cover lar
spaces. At each new level of assembly, the analysis foll
the steps outlined in the preceding two sections. Here
report only the final results for the third construct, which
defined in Fig. 13.

This configuration is represented byA3 = L2L3, d3/L2 =
φ3 � 1, ṁ′

3 = n3ṁ
′
2, A3 = n3A2, andL3 = n3L1, where

n3 is the number of second-order constructs assembled
the third-order construct. The flow architecture for which
overall pressure drop and pumping power are minimize
represented by

n3,opt ∼ φ
−9/14
1 φ

9/14
2 φ

15/14
3

(
A3

d2

)2/7

(61)

L3

L2
∼ φ

−3/7
1 φ

−3/7
2 φ

9/7
3

(
A3

d2

)1/7

(62)

�P3 ∼ ṁ′
3ν

d2φ
6/7
1 φ

6/7
2 φ

3/7
3

(
A3

d2

)−5/7

(63)

Ẇ ′
3 ∼ (ṁ′′′)2νd2

ρφ
6/7
1 φ

6/7
2 φ

3/7
3

(
A3

d2

)9/7

(64)

Eqs. (61)–(64) can be compared with the correspo
ing results obtained for the optimized second constr
Eqs. (56)–(59), to see when it is beneficial to change the
structure, from Figs. 12 and 13. Note that the third-const
power requirement (64) increases more slowly with the
of the construct than in Eq. (59). Consequently, by inters
ing the curves (59) and (64) we find the transition sizeA2−3
whereA2 = A3 andẆ ′

2 = Ẇ ′
3,

A2−3

d2 ∼ φ3
1φ

−9/4
2 φ

−15/4
3 (65)

In the sequence started by Eqs. (53), (59) and (64),Ẇ ′ is
proportional toAm, where the exponent m decreases as
series 5/3,7/5,9/7,11/9,13/11, . . .. This suggests that i
sufficiently complex and large constructs,m approaches 1
andẆ ′ is proportional to the sizeA.

The distribution of the channel volume fractions over
many scales that are present in the dendritic flow struc
(φ1, φ2, φ3, . . .) can be optimized further, with the objectiv
of minimizing the overall pumping power requirement. F
example, Eq. (59) shows thaṫW ′

2 can be minimized by

maximizingφ6/5
1 φ

3/5
2 , which is equivalent to maximizing th

groupφ2
1φ2. The fractionsφ1 andφ2 are related through th

overall channel volume constraint

A2,channels

A2
= 2d2L2 + n2d1L1

A2
(66)

or

φ12 = 2φ2 + φ1 (67)
Fig. 13. Third construct containing a large number of second const
supplied by a single stream.

whereφ12 (= A2,channels/A2) is the fixed volume fraction oc
cupied by all the channels present insideA2. The maximiza-
tion of φ2

1φ2 subject to constraint (67) yieldsφ1 = 2φ12/3,
φ2 = φ12/4, and a minimizedẆ ′

2 value that is proportiona
to (φ12/3)−9/5.

At the second construct level, Eq. (64) shows thatẆ ′
3

can be minimized by maximizing the product (φ1φ2)
6/7φ

3/7
3 ,

which according to the preceding paragraph is proportio
to (φ2

12)
6/7φ

3/7
3 . The objective then is to maximize the gro

φ4
12φ3 subject to the total channel volume constraint,

φ13 = 2φ3 + φ12 (68)

where φ13 (= A3,channels/A3) is the volume fraction oc
cupied by all the channels in the third construct. T
maximization of φ4

12φ3 subject to constraint (68) yield
φ3 = φ13/10, φ12 = 4φ13/5, and aẆ ′

3 value proportiona
to (φ13/1.895)−15/7. Inside each of the second constru
present inA3, the overall channel volume is distribute
in accordance with the distribution ofφ12, namely,φ1 =
(2/3)φ12 = (8/15)φ13, andφ2 = (1/4)φ12 = (1/5)φ13. In
summary, the ‘internal’ volume fractions decrease (φ1 >

φ2 > φ3 > · · ·) as the length scale of each new channel
creases.

Another way to summarize the optimization of chan
volume distribution is to note that starting with Eq. (5
the pumping power(Ẇ ′

1, Ẇ
′
2, Ẇ

′
3, . . .) is proportional to

φ−1
1 , φ

−9/5
12 , φ

−15/7
13 , . . . . In this sequence,φ1, φ12 andφ13

represent the overall channel volume fraction of the c
struct. The exponents−1,−9/5,−15/7, . . . suggest the se
quence −3/3,−3 × 3/5,−3 × 5/7,−3 × 7/9,−3 ×
9/11, . . . , which shows how the overall channel volum
fraction affects the overall pumping power requirement.

The external aspect ratios of the flow structures decr
as the constructs become larger and more complex.
aspect ratios of Eqs. (51), (57) and (62) are summarized

Li ∼ φp

(
A

2

)q

(69)

Li−1 d
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where the exponents decrease (p = 1,3/5,9/35, . . . ; q =
1/3,1/5,1/7, . . .) as the order of the construct (i) increas
This means that the external shape of the flow struc
approaches a square as the size and order of the d
increase.

9. Conclusions

In this paper we used simple modeling and analysi
show how adsorption processes can be optimized in
and space. In the first part of the paper, we used sev
models to show that the periodicity of an adsorption proc
can be optimized. For example, when the desorption t
is fixed, the time interval allocated to adsorption can
optimized as shown in Fig. 2. More general versions
this optimization opportunity are presented in Fig. 6
processes with variable desorption times, and in Fig. 9
processes with variable concentration in the gas space.

In each case, the demonstration was based on the sim
possible model for the sake of simplicity. The modeling w
focused mainly on the adsorption phase. To describe
desorption phase we used a group of global parameters
as the time intervalθ2, which was allowed to vary in the mor
general model of Section 3. Future studies may recons
the time-optimization opportunity by modeling the ent
cycle of adsorption and desorption, i.e., by accounting
the coupling between the two phases of the cycle.
main reason for using the simplest model first is also
main conclusion: there exist opportunities to optimize
periodicity of size-constrained mass transfer devices.

In the second part of the paper, we built the small-sc
spatial structure of the adsorption system based on the
scales of the associated diffusion processes (Section
The basic idea is to use all the available space [1]
the purpose of housing mass diffusion. This led to
elemental channel with theL/d2 ratio given by Eq. (37):
maximum volumetric density of mass transfer is achie
when each elemental channel is as long as the mass tra
entrance length of laminar flow. The elemental chann
were grouped optimally into first constructs (Section
second constructs (Section 7), and constructs of higher o
(Section 8). We showed that at each level of construc
the optimization of architecture is achieved by selecting
number of constituents and the distribution of available v
(channel) space among all the channels. The constru
objective is to pack the available space with eleme
channels in such a way that the overall pumping powe
minimal. The optimized architectures arrange themselve
a sequence that can be extended (by inspection) to h
orders of construction, as shown at the end of Section 8.
flow architecture is that of two fluid trees matched cano
to canopy: this structure was proposed first for compact
transfer devices [1,9,10,14].

The main conclusion of this work is that optimizatio
opportunities for temporal and spatial structure exist,
n

l

t

h

.

r

r

r

that they deserve to be pursued in the quest for m
exchangers with maximal concentration of mass per
volume. To cover this fundamental territory, we used
simplest models. Future studies may consider these is
based on more complex and more realistic models.
fundamental aspect of the time and space tradeoffs iden
in this paper assures us that similar tradeoffs will r
optimization in more refined descriptions of adsorptio
desorption processes.

Another expected trend is that of increasing robustnes
the complexity of the flow structure increases [1]: comp
structures tend to exhibit near-optimal performance e
though they may not match in every detail the geometr
the ultimate (optimal) design. This trend makes the const
tal sequence (Sections 5–8) a valuable and direct path t
signs that are complex and sufficiently optimized to op
ate at near-optimal levels. Future work may also search
improvements in the constructal method, for example, m
direct (analytical) strategies for the optimal structure. O
recent development is the proposal to minimize flow p
lengths [15] instead of minimizing fluid flow resistance
every level of assembly [16]. A comparison between the
methods [15,16] shows that the minimization of flow p
lengths is considerably more direct and surprisingly ac
rate. This lends even more support to the view that optim
dendritic flow structures are robust, and that many classe
near-optimal designs perform nearly as well as the opti
design.
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